
Philosophy 2310 
Evaluating Quantifier Sentences 

 
One important aspect of understanding the language of FOL is to learn what kinds of 
situations make various sentences of FOL true or false.  When we are dealing with 
situations that involve only a finite number of objects there is a straightforward 
computational procedure that can be used.  I will explain this procedure through the use 
of a series of examples.  I will use the following diagrams for the initial examples: 
 
 
Diagram 1 S1 S2   Diagram 2 S1 S2  
 
 
  T1 T2     T1 T2 
 
 
Diagram 3 S1 S2 S3  Diagram 4 S1 S2 
 
 
  T1 T2     T1 T2 T3 
 
 
EXAMPLE 1. ∀x(S(x) → ∃y(T(y) ∧ ¬P(x,y))): for every x, if x is a student, then there is 
a y such that y is a test and x did not pass y. 
  
 The main connective is the universal quantifier; so for the sentence to be true, it 
must be true in every case.  Since anything which isn’t an S will automatically make the 
conditional true, we can merely check all of the relevant cases – those that satisfy the 
antecedent.  Since the antecedent of the conditional involves the “S” predicate 
(“student”), we look at the top of the diagram.  In Diagram 1, there are two students S1 
and S2; so for the sentence to be true, the consequent of the conditional must be true for 
both S1 and S2.  This amounts to evaluating the consequent of the conditional with each 
of S1 and S2 in the place of “x”: 
 
 Case 1. ∃y(T(y) ∧ ¬P(S1, y)) 
 Case 2. ∃y(T(y) ∧ ¬P(S2, y)) 
 
Each of these must be true for the original sentence to be true.  Consider Case 1: here the 
question is whether there is a test that S1 did not pass.  Since there is such a test (namely, 
T2), Case 1 is true.  Consider Case 2: here the question is whether there is a test that S2 
passed.  Since there is such a test (namely T1), Case 2 is true.  Since these are the only 
relevant cases and they are all true, Example 1 is true on Diagram 1.  Note that the test 
chosen does not have to be the same in the two cases; that is the effect of having the 
existential quantifier occurring inside the scope of the universal quantifier. 
  



Now lets look at the same sentence on Diagram 2.  In order for it to be true, there are two 
relevant cases to check:  
 
 Case 1. ∃y(T(y) ∧ ¬P(S1, y)) 
 Case 2. ∃y(T(y) ∧ ¬P(S2, y)) 
 
In Case 1, there is at least one test that S1 did not pass (both T1 and T2 qualify; only one 
is needed though).  So Case 1 is true.  On the other hand, since S2 passed both tests, Case 
2 is false.  Since the original claim is universal, it must be true in both cases; thus 
Example 2 is false in diagram 2. 
 In Diagram 3 there are three cases to consider.  In addition to the same two cases 
as above, we also have to consider: 
 
 Case 3: ∃y(Ty ∧ ¬P(S3, y)) 
 
Case 1 is true since S1 does not pass T2.  Case 2 is true since S2 does not pass T2 and 
Case 3 is true since S3 does not pass T2.  Thus Example 1 is true on Diagram 3.   
 
Example 1 is also true on Diagram 4, but I will not go through the reasoning.   
 
Note that it is not necessary to translate the original sentence into English and then 
determine whether the English sentence is true on each of the diagrams.  If the meaning 
of the sentence is absolutely clear to you is does not hurt; however, as quantifier 
sentences become more complex, translation back into English tends to become less 
helpful and is often confusing.  Even if you can easily translate more complicated 
sentences, it is essential to learn the mechanics of determining the truth-value of the 
sentence on a diagram.  Once you break a sentence down into pieces it becomes easier 
and thus more valuable to translate back.  For example, in each Case above we have only 
one quantifier and I translated it into “there is at least one test that S1 does not pass” etc.  
At this lowest level translation is easy and often helpful. 
 
EXAMPLE 2:  ∃x(T(x) ∧ ∀y(S(y) → ¬P(y,x))): there is an x such that x is a test and for 
every y, if y is a student, then y did not pass x. 
 
 The sentence has an existential quantifier as its main connective; so in order for it 
to be true, it only needs to be true in one case (it’s OK if there are more).  Thus the 
existential quantifier works just like disjunction.  Since the predicate immediately to the 
right of the main connective is “T” (for “test”), in the first three diagrams there are two 
cases to consider, T1 and T2.  In the fourth diagram, there will be three.  What follows 
the conjunction sign must be true in at least one of these cases for the sentence to be true.  
It is false only if it is false in every case. 
 
Diagram 1:  Case 1: ∀y(S(y) → ¬P(y, T1)) 
   Case 2: ∀y(S(y) → ¬P(y, T2)) 
 



Case 1 claims that for every student y, y did not pass T1; that is, no student passed T1.  
Thus is false because S1 passed T1.  So Case 1 is false.  Also, Case 2 is false; it claims 
that no student passed T2.  But S2 passed T2.  So both Case 1 and Case 2 are false.  
Therefore Example 2 is false on Diagram 1. 
 
Example 2 is also false on Diagrams 2 and 4 since each of the cases are false. 
 
However, Example 2 is true on Diagram 3.  Here, Case 2 is true since no student passed 
T2.  Since Case 2 is true and the original sentence was an existential sentence, the 
sentence is true. 
 
 
More difficult examples: 
 
Diagram 5 S1 S2 S3  Diagram 6 S1 S2 S3 
 
 
  T1 T2 T3    T1 T2 T3 
 
 
Diagram 7 S1 S2 S3   
 
 
  T1 T2 T3     
 
EXAMPLE 3  ∀x∀y((T(x) ∧ T(y) ∧ x≠y) → ∃z(S(z) ∧ P(z,x) ∧ P(z,y))); for every x and 
for every y, if x is a test and y is a test and x is not identical to y, then there is a z such 
that z is a student and z passed x and z passed y. 
 
 Here the initial quantifiers are universal; so the sentence must be true in all 
relevant cases.  Here the cases to be considered are described by the antecedent “T(x) ∧ 
T(y) ∧ x≠y”.  We must examine all cases where x is a test, y is a test and x and y are not 
identical.  That means that we must examine all pairs of different tests.  For each diagram 
there are six pairs to consider: 
 
 <T1,T2>      <T1,T3>     <T2,T3>     <T2,T1>     <T3,T1>     <T3,T2> 
 
Notice that <T1,T2> and <T2,T1> are different pairs.  In one case, T1 is being plugged in 
for x and T2 is being plugged in for y.  In the other case, T2 is x and T1 is y.  These are 
different cases. 
 
Considering now the consequent of the conditional, this gives rise to six cases, all of 
which must come out true if the original sentence is to be true.  The cases are: 
 
Case 1.  ∃y(S(y) ∧ P(y, T1) ∧ P(y, T2)) 
Case 2.  ∃y(S(y) ∧ P(y, T1) ∧ P(y, T3)) 



Case 3.  ∃y(S(y) ∧ P(y, T2) ∧ P(y, T1)) 
Case 4.  ∃y(S(y) ∧ P(y, T2) ∧ P(y, T2)) 
Case 5.  ∃y(S(y) ∧ P(y, T3) ∧ P(y, T1)) 
Case 6.  ∃y(S(y) ∧ P(y, T3) ∧ P(y, T2)) 
 
The first of these says that there is a student who passed both T1 and T2.  This is true in 
Diagram 5 because of S1.  The second case says that there is a student that passed both 
T1 and T3.  This is true because S2 passed both T1 and T3.  The third says that there is a 
student who passed both T2 and T3.  This is true because S3 passed both T2 and T3.  
Cases 4, 5, and 6 are also true, and because of the symmetry of conjunction they depend 
on the same facts as the earlier cases.  Thus in a sense, there are really only three pairs of 
tests to consider, but this is because of the particular example.  To pass both T1 and T2 
just is to pass both T2 and T1.  However, in general the two tests might play different 
roles in a sentence so you need to also check each of these pairs as if they are different. 
 In Diagram 6, we need to consider the same six cases.  Case 1 is true since at least 
one student passed both T1 and T2 (both S1 and S2 did).  However, Case 2 is false, since 
no student passed T1 and T3.  Since there is a false case and the original sentence is 
universal, Example 3 is false on Diagram 6. 
 Example 3 is true on Diagram 7 since for any pair of tests we can find a student 
who passed them both.  In fact, if there is a student who passed every test (here S2 or S3) 
in each of the six cases, that same student will have passed both tests in question and so 
we know that each of the cases is true. 
 
EXAMPLE 4.  ∀x((S(x) ∧ ∃y(T(y) ∧ P(x,y))) → ∀y(T(y) → P(x,y))); for every x, if x is 
a student and there is a y such that y is a test and x passed y, then for every y, if y is a 
test, then x passed y. 
 
 Here the sentence is universal, so the claim must be true in all relevant cases.  
What are the relevant cases?  The antecedent of the conditional is “S(x) ∧ ∃y(T(y) ∧ 
P(x,y))”; that is to say, all students who satisfy the added condition of being such that 
there is a test that they passed.  In other words, we are checking to see if every student 
who passed at least one test passed every test. 
 Consider Diagram 7.  In Diagram 7, there are three students, but only two of 
them, S2 and S3, meet the additional condition.  So in evaluating Example 4 on Diagram 
7, we only need to consider two cases: 
  
 Case 1.  ∀y(T(y) → P(S2, y)) 
 Case 2. ∀y(T(y) → P(S3, y)) 
 
Both the cases are true since both S2 and S3 passed every test.  Therefore the original 
sentence is true.  However, Example 4 is false on both Diagram 5 and Diagram 6. 
 
 


